
Abstract—Neural networks are an emerging technology of great
interest. Many neural networks are implemented using the
TensorFlow library. TensorFlow abstracts the process of
constructing and training neural networks, and has supports for
several parallel computing interfaces including Compute Unified
Device Architecture (CUDA) and Direct Machine Learning
(DirectML). However, the structure and training process may not
be able to take full advantage of the underlying hardware due to
how TensorFlow parallelizes computations. In this paper, we
examine how changing a training variable, the batch size, affects
the performance of a sample Convolutional Neural Network
(CNN). We use the CNN to classify images from the Modified
National Institute of Standards and Technology (MNIST)
database of handwritten digits. We run the CNN on a desktop with
eight central processing unit (CPU) cores plus 4608 graphics
processing unit (GPU) cores and on a high-performance
computing (HPC) system with 2x18 CPU cores plus 5120 GPU
cores. According to the experimental results, larger batch size may
reduce training time with negligible or recoverable losses in
accuracy for certain CNN parameters. Results also suggest that
optimization must be taken on a case-by-case basis to determine
the best parameters.

Keywords—Batch size, convolutional neural networks,
parallel computing, TensorFlow, training time

I. INTRODUCTION

algorithm to update the weights. Figure 1 shows two variations
of how TensorFlow may accomplish data parallelism (namely,
synchronous and asynchronous). TensorFlow dispatches
training data to each device by accumulating the error and
synchronously updating the parameters of the model or by using
multiple training clients asynchronously generating updates.

Figure 1. TensorFlow’s use of data parallelism [1]

Backpropagation, however, cannot be parallelized to the
same degree as forward propagation within the synchronous
training process because it cannot take full advantage of data
parallelism; it is only run once after each batch and must run
after each batch is entirely processed. The processing of the
batch, however, can theoretically be parallelized up to the size
of the batch; each piece of data can be processed independently
of each other and summation of the error is a common reduction
operation. Therefore, for neural networks in which the
computational cost of forward propagation for an individual
piece of data is low, the limiting factor in training speed will be
the backpropagation steps.

The batch size determines the maximum limit of how many
items can be processed in parallel concurrently, as TensorFlow
will dispatch work for the entire batch and wait before
performing backpropagation. If the total number of items in a
training dataset is much greater than the number of items in a
batch and the computational cost of each item is much smaller
than the capabilities of the underlying hardware, then it can be
assumed that the size of a batch may limit the speed at which the
entire dataset is processed; for small batch sizes, the hardware
may be able to process the entire batch in parallel but have
unutilized computing elements that a larger batch would be able
to use. Studies observe this phenomenon, noting that increasing
the batch size can yield greater time efficiency on parallel
systems [4][5]. Liu et al. focus on dynamically changing the
batch size while training to improve the efficiency of the training
process (loss improvement over time) [4]. Ramirez-Gargallo et
al. also observe the same increase in performance as both batch
size and thread counts increase [5]. Increasing the batch size may
decrease accuracy though, as the weights of the network are not
adjusted as often over the course of training as observed by Liu

et al. In this work, a sample CNN is created and run on two
different computer systems with varying parameters to evaluate
the impact of changing the batch size during training.

III. EXPERIMENTAL SETUP
The neural network used for testing the impact of batch size

is a CNN designed to classify images from the MNIST database
of handwritten digits. The structure of the network can be seen
in Figure 2, with a 28x28 input layer for each pixel of the input
images, followed by two alternating layers of convolutions and
pooling with a kernel size of 4x4 and a pooling size of 2x2. After
flattening the network incorporates two alternating layers of
dropout and densely connected neurons, the first dense layer
having 500 neurons and the final output layer having 10 neurons
corresponding to each digit.

Figure 2. Structure of the CNN used

Each convolution and dense layer is

The accuracy plot in Figure 6 again shows similar behavior
to previous tests, with accuracy rising with the number of
epochs. This behavior seems to be consistent across all

Accuracy for the BeoShock trials showed the same trends as
with the desktop, decreasing with higher batch sizes but
recovering with more epochs.

Figure 11. Training time for the BeoShock system using GPU

Unlike the desktop system, for BeoShock, both the CPU and
GPU tests show no significant improvement with larger batch
sizes. The GPU run took significantly longer than its equivalent
on the desktop system (see Figures 7 and 11). A possible
explanation for this large difference is that BeoShock is a shared
system with different users running concurrent HPC tasks,
while the desktop was a single-user system only running
background tasks, meaning the BeoShock system would have a
much lower limit on the maximum effective computational
throughput and would be more easily saturated with work by a
smaller batch size. This is a good reminder that optimal
performance depends on the conditions of the environment the
program is running in.

V.

	I. Introduction
	II. Background
	III. Experimental Setup
	IV. Simulation Results
	A. CNN on Desktop: CPU Only
	B. CNN on Desktop: GPU Only
	C. CNN on BeoShock

	V. Conclusion
	References

