
Abstract—Neural networks are an emerging technology of great 
interest. Many neural networks are implemented using the 
TensorFlow library. TensorFlow abstracts the process of 
constructing and training neural networks, and has supports for 
several parallel computing interfaces including Compute Unified 
Device Architecture (CUDA) and Direct Machine Learning 
(DirectML). However,  the structure and training process may not 
be able to take full advantage of the underlying hardware due to 
how TensorFlow parallelizes computations. In this paper, we 
examine how changing a training variable, the batch size, affects 
the performance of a sample Convolutional Neural Network 
(CNN). We use the CNN to classify images from the Modified 
National Institute of Standards and Technology (MNIST) 
database of handwritten digits. We run the CNN on a desktop with 
eight central processing unit (CPU) cores plus 4608 graphics 
processing unit (GPU) cores and on a high-performance 
computing (HPC) system with 2x18 CPU cores plus 5120 GPU 
cores. According to the experimental results, larger batch size may 
reduce training time with negligible or recoverable losses in 
accuracy for certain CNN parameters. Results also suggest that 
optimization must be taken on a case-by-case basis to determine 
the best parameters. 
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I. INTRODUCTION



algorithm to update the weights. Figure 1 shows two variations 
of how TensorFlow may accomplish data parallelism (namely, 
synchronous and asynchronous). TensorFlow dispatches 
training data to each device by accumulating the error and 
synchronously updating the parameters of the model or by using 
multiple training clients asynchronously generating updates. 

  

Figure 1.  TensorFlow’s use of data parallelism [1] 

Backpropagation, however, cannot be parallelized to the 
same degree as forward propagation within the synchronous 
training process because it cannot take full advantage of data 
parallelism; it is only run once after each batch and must run 
after each batch is entirely processed. The processing of the 
batch, however, can theoretically be parallelized up to the size 
of the batch; each piece of data can be processed independently 
of each other and summation of the error is a common reduction 
operation. Therefore, for neural networks in which the 
computational cost of forward propagation for an individual 
piece of data is low, the limiting factor in training speed will be 
the backpropagation steps. 

The batch size determines the maximum limit of how many 
items can be processed in parallel concurrently, as TensorFlow 
will dispatch work for the entire batch and wait before 
performing backpropagation. If the total number of items in a 
training dataset is much greater than the number of items in a 
batch and the computational cost of each item is much smaller 
than the capabilities of the underlying hardware, then it can be 
assumed that the size of a batch may limit the speed at which the 
entire dataset is processed; for small batch sizes, the hardware 
may be able to process the entire batch in parallel but have 
unutilized computing elements that a larger batch would be able 
to use. Studies observe this phenomenon, noting that increasing 
the batch size can yield greater time efficiency on parallel 
systems [4][5]. Liu et al. focus on dynamically changing the 
batch size while training to improve the efficiency of the training 
process (loss improvement over time) [4]. Ramirez-Gargallo et 
al. also observe the same increase in performance as both batch 
size and thread counts increase [5]. Increasing the batch size may 
decrease accuracy though, as the weights of the network are not 
adjusted as often over the course of training as observed by Liu 

et al. In this work, a sample CNN is created and run on two 
different computer systems with varying parameters to evaluate 
the impact of changing the batch size during training. 

III. EXPERIMENTAL SETUP 
The neural network used for testing the impact of batch size 

is a CNN designed to classify images from the MNIST database 
of handwritten digits. The structure of the network can be seen 
in Figure 2, with a 28x28 input layer for each pixel of the input 
images, followed by two alternating layers of convolutions and 
pooling with a kernel size of 4x4 and a pooling size of 2x2. After 
flattening the network incorporates two alternating layers of 
dropout and densely connected neurons, the first dense layer 
having 500 neurons and the final output layer having 10 neurons 
corresponding to each digit. 

 

Figure 2.  Structure of the CNN used 



Each convolution and dense layer is 



The accuracy plot in Figure 6 again shows similar behavior 
to previous tests, with accuracy rising with the number of 
epochs. This behavior seems to be consistent across all 



Accuracy for the BeoShock trials showed the same trends as 
with the desktop, decreasing with higher batch sizes but 
recovering with more epochs. 

  
Figure 11.  Training time for the BeoShock system using GPU 

Unlike the desktop system, for BeoShock, both the CPU and 
GPU tests show no significant improvement with larger batch 
sizes. The GPU run took significantly longer than its equivalent 
on the desktop system (see Figures 7 and 11). A possible 
explanation for this large difference is that BeoShock is a shared 
system with different users running concurrent HPC tasks, 
while the desktop was a single-user system only running 
background tasks, meaning the BeoShock system would have a 
much lower limit on the maximum effective computational 
throughput and would be more easily saturated with work by a 
smaller batch size. This is a good reminder that optimal 
performance depends on the conditions of the environment the 
program is running in. 
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