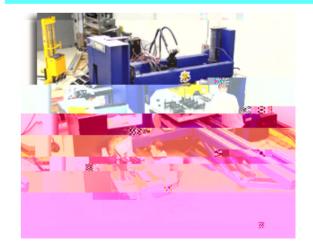


Evaluation of Friction Stir Weld Process and Properties for Aircraft Application

Evaluation of Friction Stir Weld Process and Properties for Aircraft Application

- Motivation and Key Issues
 - FSW & FSSW are emergent joining technologies
 - Aerospace applications are being developed to take advantage of cost, part count reduction, lead-time benefits, the lowered environmental impacts, etc., of these processes
 - However, each lacks sufficient supporting (mature) industry standards & design (allowables) data
- Objective
 - Incorporate FSW & FSSW design allowables data into MMPDS
 - Based on a performance and procedure specification methodology
 - Supported by developing industry standards (e.g. AWS, ISO, etc.)
- Approach
 - Develop & demonstrate protocols for incorporating FSW & FSSW data into the MMPDS Handbook collaboratively
 - Demonstrate process path independence approach for butt & lap joints

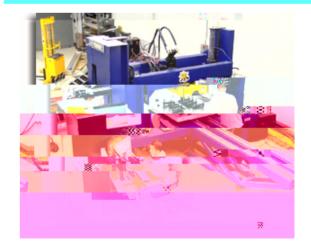

Wichita State University

- Qualification Initiatives
 - Performance Specifications
 - Butt & Lap Joint Initiatives
- Path Independent Study
- In Situ Fasteners

Butt Joint Initiative

Qualification supported by a *Path Independence* study (*fuse concept*)

Lap Joint Initiative


Qualification of "friction stir spot welds" as *In Situ* Fasteners (tested similar to *installed*

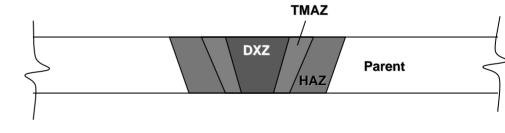
Wichita State University

- Qualification Initiatives
 - Performance Specifications
 - Butt & Lap Joint Initiatives
- Path Independent Study
- In Situ Fasteners

- As established by published work and experience, FSW has a sufficiently flexible process window that allows all aluminum alloys to be joined with a wide variety of weld tool designs
- It is hypothesized, therefore, that:

JAMS

- an unlimited number of weld tool designs using independently developed process windows can be used to make equally sound joints having minimum joint properties/efficiencies
- any advantage one tool may have over another is expected to be evident primarily in terms of productivity, i.e. welding and processing speeds.


Wichita State University

- Mechanical properties of joints linked to parent material properties
 - FSW is <u>an additional local thermal-mechanical processing step</u> that 1) refines the local microstructure and 2) retains the bulk chemistry (e.g. filler material is not typically added)
- Due to the local nature of the process, gradients in mechanical properties exist and vary across the joint
 - Different failure modes and/or failure locations in transverse tensile tests may be varied in FSW joints by controlling the process parameters
 - This allows <u>placement of the failure location</u> in a controlled manner (Parent, HAZ, TMAZ, DXZ) to reduce variability in joint properties

- Variation & Failure Location Control
 - Reduce variation by promoting / controlling failure to a unique failure mode / location through process control
 - Parent
 - HAZ
 - TMAZ
 - DXZ (nugget)

- Fuse Approach / Concept
 - Place failure in "overaged" parent material (covered by allowables)

Path Independence: **Initial DOE Parameters**

WSU Wiper 0.600			
RPM	400-800		
IPM	10-20		
Forge	<u>4500-5250</u>		
WSU Wiper 0.800			
RPM	300-500		
IPM	10-16		
Forge	7000-8000		
MX Triflute 0.800			
RPM	300-500		

10-16

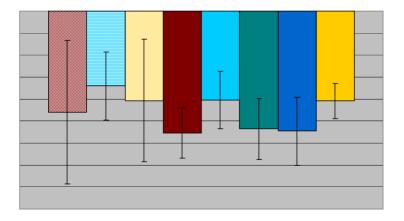
7000-8000

JMS

IPM

Forge

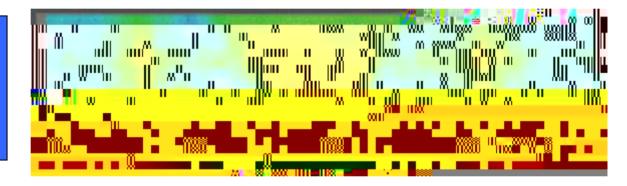
Design of Experiments (DOE) process	TWI 5651 1.000		
	RPM	250-400	
	IPM	7-16	
	Forge	<u>8500-10500</u>	
	Full Scr	oll 1.000	
	RPM	250-400	
	IPM	7-13	
	Forge	7500-9000	
	Trivex™	vex™ 1.000	
	RPM	300-600	
	IPM	10-18	
	Forge	9000-10500	


Wichita State University

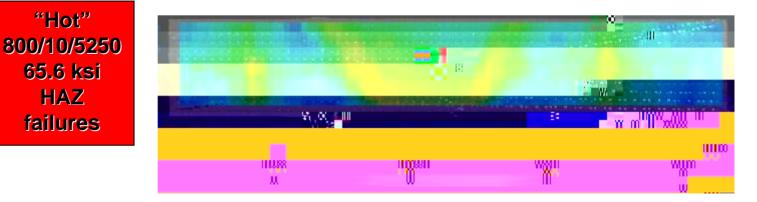
Path Independence: Lateral Contraction

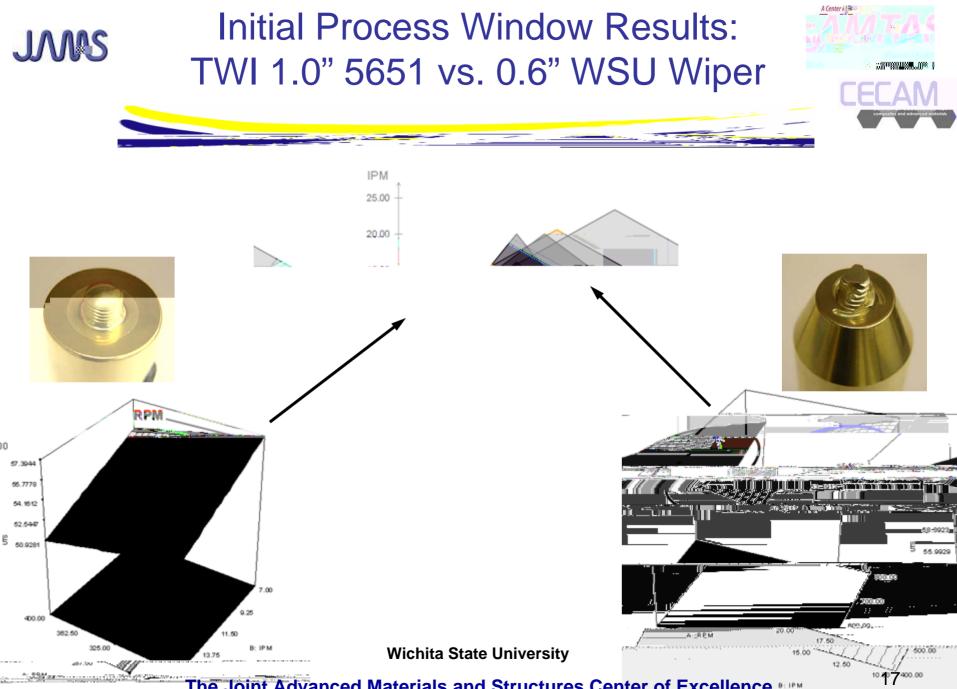
- No statistical difference between contraction measurements for variations in tool design and weld parameters
 - Due to small overall differences and relatively large scatter.
 - However, caliper measurements led to higher standard deviations.

Wichita State University

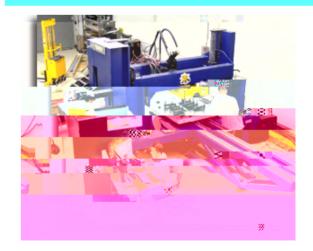


Microhardness Results: 0.6" WSU Wiper™ & Twisted Flats

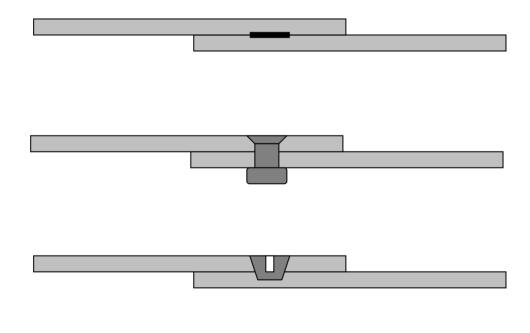



Transverse cross-sections of FSW joints (looking in the direction of travel with the advancing side on right)

Wichita State University



Wichita State University


- Qualification Initiatives
 - Performance Specifications
 - Butt & Lap Joint Initiatives
- Path Independent Study
- In Situ Fasteners

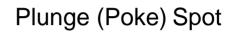
Qualification of "friction stir spot welds" as *In Situ* Fasteners tested & analyzed similar to Installed Fasteners

Resistance Spot Weld: Bonding surfaces across interface

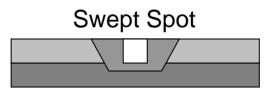
<u>Rivet</u>: installed in hole and compressed to form tight joint

<u>FSSW</u>: Unique fine-grained metallurgical structure extending between components (providing bearing strength)

Wichita State University



Lap Joint Initiative: In Situ Fasteners



<u>Types of FSSW "Spots"</u>

- Plunge (Poke) Spot (Mazda)
- Swept Spots
 - Squircle[™] (TWI)
 - OctaSpot[™] (WSU)
- Friction (refill) Spot Welding (GKSS)
- Swing (stitch) Spot
- High Rotational Speed (HRS) FSSW (WSU)

Wichita State University

Lap Joint Initiative: In Situ Fasteners

- Benefits of friction stir swept spot joints
 - Discrete fastener locations
 - Separated by parent material (similar to rivets)
 - Discontinuous HAZ along joint line
 - Dual-thickness joint vs. hole with filler (e.g. rivet)
 - "Pad up" effect vs. stress concentration (rivet hole)
 - Long-term stiffness & stress concentration considerations, e.g. in aging aircraft
 - Elimination of filler material, i.e. fastener
 - Fabricate fastener in place by mechanically working parent material (finer grain)
 - Produces integral fastener
 - Leads to part count reduction

Wichita State University

Lap Joint Initiative: In Situ Fasteners

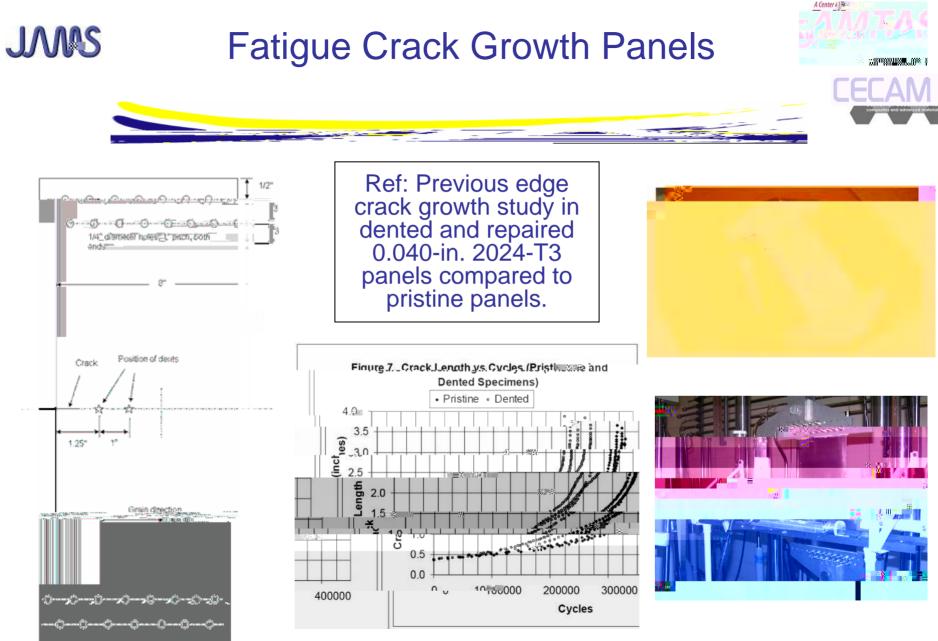
- Benefits of friction stir swept spot joints (cont'd)
 - Tailorable spot size and shape
 - More latitude than with rivets (diameter constraints, etc.)
 - Orient shape to control stress, crack growth, etc.
 - Placement of advancing vs. retreating side on periphery of spot (i.e. in situ fastener)
 - Rapid installation (minimal HAZ)
 - Randomize sequence of installation (to lower distortion)
 - Potentially installed via robot vs. gantry
 - Lower cost solution
 - Field installation & repairs
 - Simplified tooling (lower normal and lateral forces)
 - etc.

Wichita State University

In Situ Fasteners Qualified as Installed Fasteners

• Approach

- Develop a methodology for qualifying different types of friction stir spot welding (FSSW) joints as *in situ* fastener systems.
- Treat individual "spots" as installed fasteners
 - Parent material is used to form an integral mechanical fastener *in place* between two or more materials joined by a lap joint

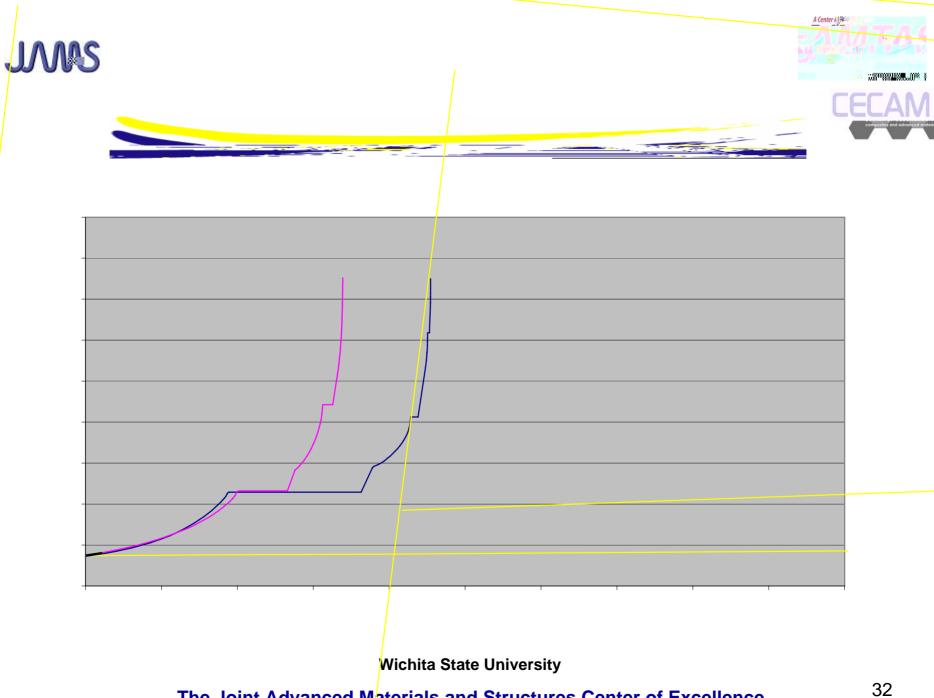

• Notes

- In both static and dynamic tests, appropriately designed FSSW (e.g. swept spots) joints are proving stronger than rivets
 - Spots are integral with the parent material
 - Their size and shape of spots can be tailored
 - They appear to provide favorable residual stresses and a pad up effect
- FSSW joints are expected to be the most straightforward friction stir-related technology to qualify for inclusion in the MMPDS because they are the most like mechanical fasteners, e.g. discrete.

Wichita State University

Bert L. Smith, et al.

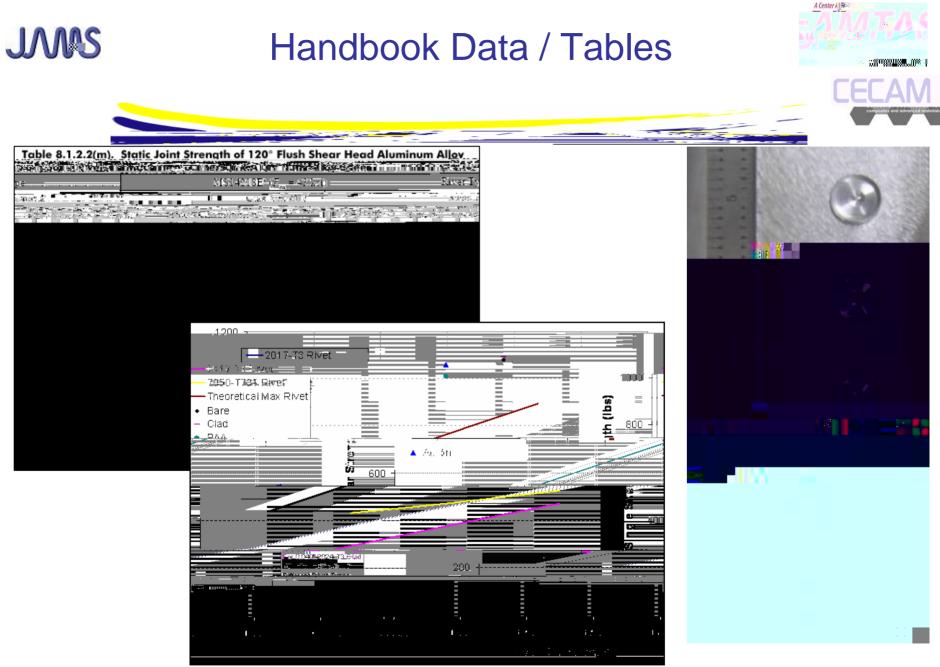
Fatigue Crack Growth Panels: Residual Stress Effect?



Wichita State University

The Joint Advanced Materials and Structures Center of Excellence

STORATES


Slow Fatigue Crack Growth Rate in FSSW Panels

- Observations from stretcher-leveled (stress relieved) FSSW panels
 - Fatigue crack growth rate higher than in as-welded panels
 - Demonstrated similar fatigue crack growth rates to pristine panels
- Possible contributing factors
 - Precession of tool around center of spot with spindle tilt (for concave tool shoulder)
 - Heel pressure

 Compressed surface region around spot periphery

Wichita State University

A Look Forward

- Benefit to Aviation
 - A verified qualification methodology & procedure
 - Testing & certification
 - Controls & acceptance criteria
 - Organized & certified design data
 - MMPDS (Mil HDBK 5) type data
 - S, A, & B basis
 - Design Parameters and Process Guides
 - Process & performance Specifications
 - Comparative data: FSSW vs. resistance spot welds and rivets

Wichita State University

The Joint Advanced Materials and Structures Center of Excellence

- A cost effective lean/green aerospace technology
 - Low energy use
 - Reduced
 cycle/manufacturing time
 - Part count reduction
 - Reduced weight
 - Low emissions,

35