

#### Nanomechanical Property Characterization of Adhesive Bondlines

Rita Olander, PhD Candidate MSE

PI: Brian Flinn

Research Collaboration FAA, Boeing, and UW FAA Tech Monitor: Ahmet Oztekin FAA Sponsors: Cindy Ashforth, Larry Ilcewicz



#### Outline





#### Motivation & Key Considerations Long-Term Exposure Effects

- Composite joints are designed to undergo thousands of service hours under environmental conditions (e.g. hot-wet, fuel, hydraulic fluid)
  - Diffusion of moisture Æhygrothermal effects \_
  - Cyclic loading Æratchet and fatigue effects —
  - Oxygen-rich and elevated temperatures Æthermo-oxidative effects
- Better techniques for evaluating long-term exposure on bondline interphase and constituents are desired
  - Physical and chemical changes —
    - Changes in mass density and toughness
    - Plasticize
    - Tg changes
      - Moisture absorption, cross-link density, free volume

 $\frac{3}{4}$  Do regions within the bondline behave differently long-term?

 $\frac{3}{4}$  Are bonds changing, and if so, are they changing at different rates?





Olander. R., 3

#### **Composite Bond Architecture Types**





#### Motivation & Key Considerations

- Bonding creates an interphase between two materials
  - Interphase can affect bond strength and durability
  - factors influencing interphase development need further investigation
- Characterization of the micron-scale regions within bondlines is complex due to their size
  - Complex microstructures and chemistries different from bulk materials
  - Investigate effect of potential changes in microconstituents









#### **Preliminary Investigation**

- Nanomechanical method to evaluate adhesive bondlines was developed
- Distinct bondline regions were detected



• Properties in distinct bondline regions were found to be statistically different





#### Value to Industry

- Support evaluation of existing or new bonding systems
  - Characterize interfaces and/or interphases within systems
    - Bulk properties vs. Interface/Interphase proprieties
    - Evaluate effect of toughening particles, scrim, additives, etc.
  - Potentially act as screening tests for new systems
    - Process development
- Further understand the long-term exposure effects
  - C01 (har)-3 (ac)-1 M (y)-1 ( )93.6f2 (s)-10 (oc)-.6 mel-1 (s)-5 rsPot5acemts









- 2. Development of model system to investigate degree of comingling
  - Controlled mixtures of bulk adhesive and bulk resin
  - "Cocure Interphase Mixtures" based on "Rule of Mixtures" Theory









- 2. Development of model system to investigate degree of comingling
  - Controlled mixtures of bulk adhesive and bulk resin
  - "Cocure Interphase Mixtures" based on "Rule of Mixtures" Theory

| Model<br># | Fabrication<br>Method                    | Adherend Resin                                                      | Adhesive Resin                                   |
|------------|------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|
| 1          | Acetone Extraction                       | Toray T800S/3900-2<br>Prepreg                                       | Solvay Metlbond® 1515-3 modified epoxy supported |
| 2          | "Neat" Resin,<br>FlackTek<br>SpeedMixer® | Toray 3900-2 Same<br>Qualified Resin<br>Transfer Molding<br>(SQTRM) | AF 555 unsupported film                          |







3. Investigation of high temperature exposure effects on interphases in bondlines

|                                           |                | Surface Preparation      |                                |                          |
|-------------------------------------------|----------------|--------------------------|--------------------------------|--------------------------|
|                                           | Bond Type      | Adherend <sup>[F1]</sup> | (cured adherend only) [F2]     | Adhesive [F3]            |
| Baseline                                  | Secondary Bond | Toray T800S/3900 resin   | Diatex 1500EV6 woven polyester | Solvay Metlbond® 1515-4  |
| DCB Sample <sup>[F4]</sup>                |                |                          | peel ply                       | modified epoxy supported |
| Baseline                                  | Cobond         | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
| DCB Sample <sup>[F5]</sup>                |                |                          | polyester peel ply             | modified epoxy supported |
| 2hrs @ 330 qF                             | Cobond         | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
| DCB Sample <sup>[F5]</sup>                |                |                          | polyester peel ply             | modified epoxy supported |
| 1hr @ 400 qF                              | Cobond         | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
| DCB Sample <sup>[F5]</sup>                |                |                          | polyester peel ply             | modified epoxy supported |
| 30days @ 3300 qF                          | Cobond         | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
| DCB Sample <sup>[F5]</sup>                |                |                          | polvester peel plv             | modified epoxy supported |
| Lab Ambient 2008 Exposure DCB             | Secondary Bond | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
| Sample <sup>[F5]</sup>                    |                |                          | polyester peel ply             | modified epoxy supported |
| 2012 environmentally exposed              | Cobond         | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
| Scrapped Cobond <sup>[F4, F6]</sup>       |                | Toray FGF-108 29M        | polyester peel ply             | modified epoxy supported |
| Scrapped Parts Cobond <sup>[F4, F6]</sup> | Cobond         | Toray T800S/3900 resin   | Precision Fabric Group 60001   | Solvay Metlbond® 1515-3  |
|                                           | Time, 5        | Toray FGF-108 29M        | polyester peel ply             | modified epoxy supported |

[F1] 350°F cured carbon fiber reinforced polymer matrix

[F2] Peel ply removed just prior to bonding

[F3] 350°F cured film adhesive

[F4] Samples produced by manufacturer

[F5] Samples produced by UW in lab setting

[F6] boneyard uncontrolled environment not maintained and exposed to the elements (e.g., standing water)

#### 





#### **Coupon Considerations**

Bondline variation observed through nanomechanical testing could be due to:

• Different material batchesine variation re Wn BT 0 scn /TT0 1 Tf 1





6/14/2024

#### Nanomechanical and Nanochemical Anaylsis

Olander, R., 16 ritaj2@uw.edu

#### Nanoindentation Methodology

- Hysitron TriboIndenter 980 with Berkovich diamond indenter tip
- Indent surface from tens of nanometers to several micrometers deep
- Extreme Property Mapping (XPM<sup>™</sup>)
  - Hardness and reduced modulus mapped across bondline
- Nano-Dynamic Mechanical Analysis (NanoDMA)





Hysitron TriboIndenter 980 at U. Washington



ritaj2@uw.edu

#### Nanoindentation Limitations

- At this time, no relationship exists between nanomechanical characterization to any engineering properties used in the design, analysis and certification of bonded composite structures
- Subsurface heterogeneity can influence measurements
- Plastic zone around indentation can affect nearby measurements
  - Increasing spacing can prevent plastic zone interactions but results in lower spatial resolution







#### Nanomechanical Characterization

• Nanodynamic mechanical analysis on a submicron scale ÆOscillating force applied to nanoindenter tip Æsinusoidal stress is applied Æstrain of the material is measured ÆMeasures viscoelastic properties of the material  $Tan(delta) = \frac{E^{\tilde{n}\,\tilde{n}}}{E^{\tilde{n}}}$ 





### Nanochemical Characterization

Photo-induced Force Microscopy (PiFM)

- Non-contact AFM method relying on tipsample force interactions [19,20]
- Highly localized field created by excitation laser focused on a metal coated AFM tip [19,20]
- Fixed-wavelength PiF images -3 (h scn (x)Qn)]TJ 0.103 Tw-99.0 -0.96 Td [id iial c
  - nti-1 (f)-3 bycacteri-1 scti oriosycii-3 (h s )]TJ 0.003 Tw 0 -0.9 am(er)-3 (at)-.r]





6/14/2024

### Preliminary Results

Olander, R., 22 ritaj2@uw.edu

## Bondline Property Mapping

XPM – Cobond Toray 3900-2 and Solvay MB1515-3



#### Cobonded systems show distinctive mechanical property trend within bondline:

Resin> Cocure Interphase > "Bulk" Adhesive > Adhesive near Secondary Bond Interphase











#### NanoDMA Cobond Toray 3900-2 and Solvay MB1515-3



#### **Preliminary Conclusions**

- Cobonded Systems have distinctive nanomechanical properties
  - Cobonded interphase regions showed intermediate values between the "bulk" properties of the adhesive and resin Æsignificant mixing during cure
  - Nanomechanical property trend within bondline

Resin Cocure Interphase "Bulk" Adhesive Adhesive near Secondary Bond Interphase

- Nanomechanical properties change with high temperature exposures
  - Increase in modulus and hardness suggest "post cure" effect after high temp exposure below T<sub>q</sub>
  - Decrease in modulus potentially indicating change of materials after high temp exposure <u>above</u> T<sub>g</sub>
  - NanoDMA may be able to detect subtle changes in T<sub>g</sub> due to the degree of comingling across bondline regions in cobonded systems





#### **On-going Work**

- 1. Nanochemical Analyis PiFM on bonded systems
- 2. "Cocure Interphase Mixtures" Model System
  - Characterization of comingling regions using controlled mixtures
    - T<sub>g</sub>
    - Chemical Analysis
- 3. Characterize adhesive bondlines with various heat exposures
  - Correlate adhesive bondlines with various exposures to controlled mixtures Æ understand the effect of heat exposures on bondline properties





### **On-going Work**

- 1. Nanochemical Analyis PiFM
- PiF spectra indicates peak location shifts, broadening/sharpening, absorbance
  - Peak 1 shift with increased comingling
  - Peak 2 peak broadening with increased comingling

PiFM can be used to estimate the degree of comingling in each bondline region





Olander, R., 30 RROI# 24-181587-ETT



#### Acknowledgements

- University of Washington
  Molecular Analysis Facility, National Science Foundation (grant NNCI-15.







