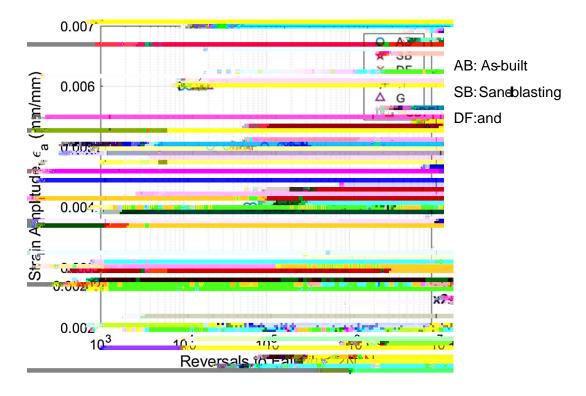
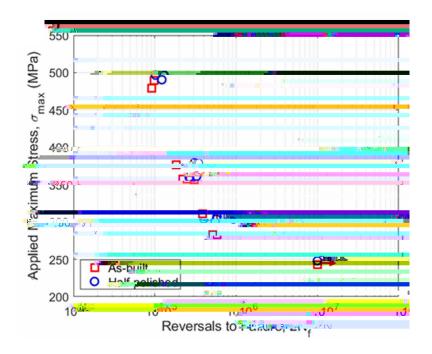

National Center for Additive Manufacturing Excellence

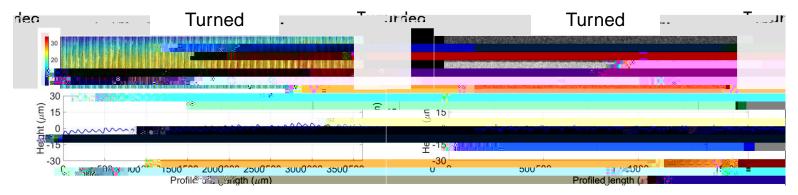
Factors Affecting Qualification/Certification - Surface Integrity of Additively Manufactured Ti-6Al-4V Parts

Ш


Background


L-PBF Ti-6Al-4V

Background


Challenge

	As-built		Half-polished	
Surface texture parameters	Line	Area	Line	Area
Arithmetical mean height (Ra				

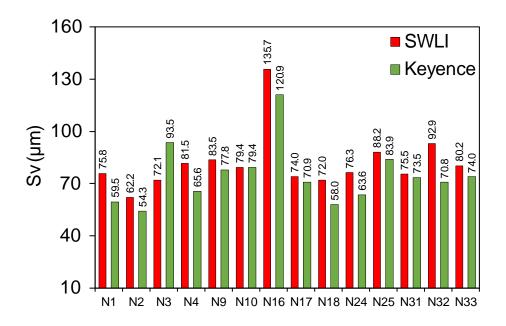
Challenge

- f The applicability of different notestructive inspection (NDI) techniques to measure the surface texture of parts has not been thoroughly studied
- f While xray computed tomography (XCT) can capture surface texture and subsurface volumetric defects to use and the resolution may not be adequate
- f Depending on the measurement technique employed, the calculated values of standard surface param

- f Objective: Factors Affecting Qualification/Certificationsurface Integrity of Additively Manufacture 6/411/4V Parts
- f Approach: Four steps are taken,
 - Lexplore the effect of key process variables and/orpposessing on surface and recarriace conditions
 - II. Evaluate the effectiveness of NDI techniques to assess their capability of detecting material and manufactu anomalies on the surfaces and sexiace
 - III. Determine the combined effect of surface and swefarce defects on tensile behavior and fatigue life
 - Identify the key influencing defect features on tensile and fatigue properties and establish appropriate metric characterizing surface conditions

Task List

- TASK 1: Literature Review & Design of Experiment (DoE)
 - 1.1. Literature review
 - 1.2. DoE
- TASK 2: Fabrication & Surface Treatments of Specimens
 - 2.1. Fabrication of specimens with recommended infill parameters
 - 2.2. Fabication of specimens with recommended contour parameters
 - 2.3. Surfactments of specimens
- TASK 3: NDI
 - 3.1. Digital/optical microscope
 - 3.2.XCT
 - 3.3. Florescerptenetrantnspection
- TASK 4: Mechanical Testing & Fractography
 - 4.1. Tensile & fatigue tests
 - 4.2. Fractography
- TASK 5: Data Analysis & Modelling
 - 5.1. Effectiveness of NDI techniques to detect surface artical anomalies
 - 5.2. Surface/nessurface defect featuretensile behavior correlation
 - 5.3. Surface/nessurface defect feature satigue life correlation
 - 5.4. Representative surface metrics for the tensile and fatigue behavior of AM parts
- TASK 6: Final Report


f Objective: Factors Affecting Qualification/Certificationsurface Integrity of Additively Manufacture 6/411/4V Parts

f Approach: Four steps are taken,

Explore the effect of key process variables and/or post

Results: Surface Texture of XCT Coupons

f Coupon without contour resultindeepessurface valleys

f Infill process parameters (i.e., KH and LoF) did not significantly affect Sa and Sv values

Results: Selection of Process Parameters

Geometry	Orientation	Contour	Infill	Sa (µm)	Sv (µm)	Surface Treatment
Solid	Vertical	No contour	Default	19	135	No
Solid	Vertical	Order of contours	Default	20	74	No
Solid	Vertical	Order of contours	Default	20	70	No
Solid	Vertical	Order of contours	Default	19	76	No
Solid	Vertical	1 contour	Default	20	88	No
Solid	Vertical	1 contour	Default	17	75	No
Solid	Vertical	Different offsets	Default	21	92	No
Solid	Vertical	Different offsets	Default	17	70	No
Solid	Vertical	Default	KH	19	79	No
Solid	Vertical	Default	KH	21	83	No
Solid	Vertical	Default	LoF	21	75	No
Solid	Vertical	Default	LoF	18	62	No
Solid	Vertical	Default	LoF	20	93	No
Solid	Vertical	Default	Default	21	81	No

Note: Greenshading indicates selected process parameters for fabrication of tensile and fatigue specimens

f Reported Sa and Sv values were obtained using SWLI

f Objective: Factors Affecting Qualification/Certificationsurface Integrity of Additively Manufacture 6/411/4V Parts

f Approach: Four steps are taken,

- I. Explore the effect of key process variables and/opposessing on surface and received conditions
- II. Evaluate the effectiveness of NDI techniques to assess their capability of detecting material and manufactu anomalies on the surfaces and sexiace
- III. Determine the combined effect of surface and swefarce defects on tensile behavior and fatigue life
- IV. Identify the key influencing defect features on tensile and fatigue properties and establish appropriate metric characterizing surface conditions

Overview of NDI Techniques

Displacement

Dektak

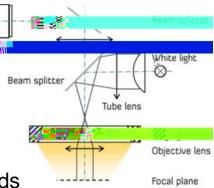
Advantages

-Measurements can be obtained quickly

Disadvantages

- -Requires continuous contact with the surface
- -Performs line scans not area Cost:

Cost	~\$10,000	
Scan Time	e2 Minutes	

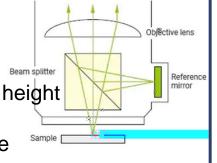

Keyence

Advantages

-Measurements can be obtained quickly

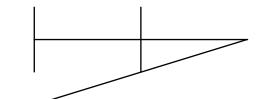
Disadvantages

- -Glare can cause outliers in the data
- -Resolution is not as fine as other methods


SWLI

Advantages

-Measurement can achieve subanometer precision in height


Disadvantages

-Cannot read spiky or nonreflective asperities

Cost	~\$200,000		
Scan Time	40 Minute		

XCT

Results: Surface Texture from the Matching Areas

- f XCT surface topography with overhang structures showed similar results to other techniques
- f Dektak and Keyence showed lower roughness values

f Objective: Factors Affecting Qualification/Certificationsurface Integrity of Additively Manufacture 6/411/4V Parts

f Approach: Four steps are taken,

- I. Explore the effect of key process variables and/opposessing on surface and recorditions
- II. Evaluate the effectiveness of NDI techniques to assess their capability of detecting material and manufactu anomalies on the surfaces and sedace
- III. Determine the combined effect of surface and swefarce defects on tensile behavior and fatigue life
- Identify the key influencing defect features on tensile and fatigue properties and establish appropriate metric characterizing surface conditions

Summary

- f Variation in infill process parameters did not affect surface texture values
- f Coupons without contour exhibited deepest surface valleys
- f In general, Dektak and Keyence showed lower surface texture values compared to the SWLI and XCT
- f The surface texture values obtained from the XCT were dependent on the specific method used for proraw data

J

Thank you for your attention!

f National Center for Additive Manufacturing Excellence (NCAME)